Generalized Geometry, Equivariant ∂∂-lemma, and Torus Actions

نویسنده

  • YI LIN
چکیده

In this paper we first consider the Hamiltonian action of a compact connected Lie group on anH-twisted generalized complexmanifold M. Given such an action, we define generalized equivariant cohomology and generalized equivariant Dolbeault cohomology. If the generalized complex manifoldM satisfies the ∂∂-lemma, we prove that they are both canonically isomorphic to (Sg)⊗HH(M), where (Sg ) is the space of invariant polynomials over the Lie algebra g ofG, andHH(M) is the H-twisted cohomology of M. Furthermore, we establish an equivariant version of the ∂∂-lemma, namely ∂G∂-lemma, which is a direct generalization of the dGδ-lemma [LS03] for Hamiltonian symplectic manifolds with the Hard Lefschetz property. Second we consider the torus action on a compact generalized Kähler manifold which preserves the generalized Kähler structure and which is equivariantly formal. We prove a generalization of a result of Carrell and Lieberman [CL73] in generalized Kähler geometry. We then use it to compute the generalized Hodge numbers for non-trivial examples of generalized Kähler structures onCP and CP blown up at a fixed point.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

∂∂-lemma, and Torus Actions

In this paper we first consider the Hamiltonian action of a compact connected Lie group on anH-twisted generalized complexmanifold M. Given such an action, we define generalized equivariant cohomology and generalized equivariant Dolbeault cohomology. If the generalized complex manifoldM satisfies the ∂̄∂-lemma, we prove that they are both canonically isomorphic to (Sg)⊗HH(M), where (Sg ) is the ...

متن کامل

The Equivariant Cohomology Theory of Twisted Generalized Complex Manifolds

It has been shown recently by Kapustin and Tomasiello that the mathematical notion of Hamiltonian actions on twisted generalized Kähler manifolds is in perfect agreement with the physical notion of general (2, 2) gauged sigma models with three-form fluxes. In this article, we study the twisted equivariant cohomology theory of Hamiltonian actions on H-twisted generalized complex manifolds. If th...

متن کامل

Canonical Divisors on T-varieties

Generalising toric geometry we study compact varieties admitting lower dimensional torus actions. In particular we describe divisors on them in terms of convex geometry and give a criterion for their ampleness. These results may be used to study Fano varieties with small torus actions. As a first result we classify log del Pezzo C∗-surfaces of Picard number 1 and Gorenstein index ≤ 3. In furthe...

متن کامل

Actions of the Torus on 4-manifolds. I

Smooth actions of the 2-dimensional torus group SO(2) x 50(2) on smooth, closed, orientable 4-manifolds are studied. A cross-sectioning theorem for actions without finite nontrivial isotropy groups and with either fixed points or orbits with isotropy group isomorphic to SO(2) yields an equivariant classification for these cases. This classification is made numerically specific in terms of orbit...

متن کامل

The C Closing Lemma for Nonsingular Endomorphisms Equivariant under Free Actions of Finite Groups

In this paper a closing lemma for C1 nonsingular endomorphisms equivariant under free actions of finite-groups is proved. Hence a recurrent trajectory, as well as all of its symmetric conjugates, of a C1 nonsingular endomorphism equivariant under a free action of a finite group can be closed up simultaneously by an arbitrarily small C1 equivariant perturbation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008